通常来讲,国外会要求样品中目标化合物的相对保留时间不能与标准数值相差超过0.05min;不同目标化合物少要有3个特征离子,并且相对离子比例相较于标准而言,要控制在10%之内;加标回收率需控制在65%-110%之间。采取离子模式一般会要求所有目标化合物少有2个大于m/z200或是3个大于m/z100的特征离子;目标化合物特征离子比例相较于标准值需控制在60%-120%之间;加标回收率在70%-130%之间,判断检测则要在60%-120%之间。气相色谱技术主要依据特征离子与离子间的比例去确定是否存在农药残留超标的问题,有着较高度以及环境适应性。
图像分割的准确性直接作用于目标物测量的准确性,其效率直接影响生产的效率,因而,一个快速准确图像分割算法是目标识别,分级分类任务面临的首要问题。在农业产品分级分类任务中,图像分割的目的是将工业相机采集到的图片中的农产品准确的提取出来,为进一步的尺寸测量,分类任务做好准备。对于农产品图像分割算法来说,由于受到生产设备成像质量,灰尘污渍,光照条件,阴影等外部因素影响,造成分割的不准确。本文通过对比不同图像分割算法,阐述各类算法的优缺点,以及各自合适的应用场景。
基于深度学习的图像分割方法,主要研究领域是在于语义分割,即根据图片内容,将图像分为多个有含义的部分,对于农产品分类而言有着革命性的意义。全卷积网络FCN是深度学习用于进行图像分割的先驱,以分类模型AlexNet为基础,将其3层全连接层转化为反卷积层进行上采样,从而将输出有特征分类转化为区域特征热力图。